If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2+20x+3=0
a = 30; b = 20; c = +3;
Δ = b2-4ac
Δ = 202-4·30·3
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{10}}{2*30}=\frac{-20-2\sqrt{10}}{60} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{10}}{2*30}=\frac{-20+2\sqrt{10}}{60} $
| z²+2z+5=0 | | X(4-2x)=0 | | 4x+3/9+2x/5=x+2/15 | | (3+x)^2+20x=0 | | 2x=2x+32 | | 10x^2-60x+10=0 | | (2+4x)(2x+2)=180 | | 11x+5=-28 | | 8x-2=98 | | n+1/3n=60 | | n+(n÷3)=60 | | 7x-12=-82 | | 4x+100=2x+50 | | 6(3n+2)-5(6n-1)=3(n-8)-5(7n-6)+9n | | 9x-37=10x-5 | | 2x^2-6x+4=8 | | 3x(-7x-8)=0 | | 2/5x+4=-3/5-x | | 25x^2-x+30=0 | | 4(3x+7)=-19+35 | | 7(7g+4)/4=54 | | 4x-9=5x-2x | | 8(m-5)-7(m+4)=-68 | | 4x^2-40x+91=0 | | x+36/x=2/5 | | 2x-3-12=0 | | x^2+5x-(4.89290729123)*(-1x+0.4)-2=0 | | x^2/(0.4-x)=1.8*10^-5 | | X=2x+26 | | 4y-7+2y=5y-6 | | x+18/100*x=100 | | (2a-5)^2-54=0 |